
H
O

R
S

TM
A

N
N

N
ec

A
iS

eThis exciting new text by Cay Horstmann and Rance Necaise provides an introduction to programming

using Python that focuses on the essentials and on the problem-solving skills all good programmers

need to be successful. Suitable for a first course in programming for students in computer science,

engineering, scientific, or liberal arts disciplines, it requires no prior programming experience.

KEY FEATURES

• A visual approach motivates the reader and eases navigation. Abundant illustrations and

photographs make concepts memorable. Syntax boxes annotate code examples to present a visual

summary of key points.

• Guidance and worked examples help students succeed. Step-by-step “how-to” boxes guide

students through the implementation of core concepts. Worked examples apply these steps to new

problems. “Tips” and “Common Errors” boxes guide students to good practice.

• Practice makes perfect. Abundant practice tools build student confidence and skills. Self checks

in each section test understanding and point students to exercises they can do to practice what they

learned.

• Teaches computer science principles, not just Python. The core of the book builds students’

skills in control flow, loops, functions, lists, file I/O, sets, and dictionaries before addressing classes

and inheritance.

• A focus on problem solving. Problem-solving sections provide techniques for planning and

evaluating solutions—before starting to code. These include the use of psuedocode for algorithm

design, hand-tracing code segments, storyboards and more.

HORSTMANN + NECAISE =

A WHOLE NEW WAY TO LEARN PROGRAMMING WITH PYTHON!

CAY S. HORSTMANN is a Professor of Computer Science in the Department of Computer Science at San

Jose State University. He is an experienced professional programmer, having worked as Vice President

and Chief Technology Officer for an internet startup and as a consultant for major corporations, univer-

sities, and organizations. Horstmann is the author of many successful professional and academic books,

including Big Java, Big Java: Late Objects, Big C++, and C++ for Everyone —all with Wiley.

RANCE D. NECAISE is a member of the faculty in the Department of Computer Science at The College

of William and Mary. He has over 22 years of teaching experience across a broad range of the computer

science discipline. Necaise is also the author of Data Structures and Algorithms Using Python published

by Wiley and has authored numerous professional and pedagogical online tutorials and references.

9 781118 626139

90000
ISBN 978-1-118-62613-9

www.wiley.com/college/horstmann

pyTH
O

N
F

O
R

 E
V

E
R

Y
O

N
E

Cover design: Madelyn Lesure
Cover image credits: castle: Anik Messier/Getty Images, cow: © Eric Isselee/Shutterstock,
hotair balloon: © Mikhail Mishchenko/123RF.com, trumpets: © modella/123RF.com,
trebuchet: © Stephen Coburn/123RF.com, parrot: © Eric Isselée/iStockphoto,
binoculars: © Tom Horyn/iStockphoto

Python
F O R E V E R Y O N E

cAy HORSTMANN
RANce D. NecAiSe

Executed while
condition is true

Condition

A container (list, str, range, dict, set)

Loop Statements

while balance < TARGET :
 year = year + 1
 balance = balance * (1 + rate / 100)

for value in values :
 sum = sum + value

Selected Operators and Their Precedence
(See Appendix B for the complete list.)

[] Sequence element access
** Raising to a power
* / // % Multiplication, division, floor
 division, remainder
+ - Addition, subtraction
< <= > >= != in Comparisons and membership
not

or Boolean operators
and

Variable and Constant Definitions

cansPerPack = 6

CAN_VOLUME = 0.335

Name Initial value

Exits method and
returns result

Function name Parameter name

Function Definition

def cubeVolume(sideLength) :
 volume = sideLength ** 3
 return volume

Mathematical Functions

abs(x) Absolute value |x|
round(x) Rounds to nearest integer
max(x1, x2, ...) Largest of the arguments
min(x1, x2, ...) Smallest of the arguments

From math module:
sqrt(x) Square root x
trunc(x) Truncates to an integer
sin(x), cos(x), tan(x) Sine, cosine, tangent of x
degrees(x), radians(x) Converts to degrees or radians
log(x), log(x, base) Natural log, logbase(x)

Conditional Statement

if floor >= 13 :
 actualFloor = floor - 1
elif floor >= 0 :
 actualFloor = floor
else :
 print("Floor negative")

Condition

Executed when condition is true

Second condition (optional)

Executed when
all conditions are
false (optional)

Use uppercase for constants

Tables

table = [[16, 3, 2, 13],
 [5, 10, 11, 8],
 [9, 6, 7, 12],
 [4, 15, 14, 1]]

for row in range(len(table)) :
 for column in range(len(table[row])) :
 sum = sum + table[row][column]

Number of rows
Number of columns

Imports

from math import sqrt, log

 Module Imported items

Strings

s = "Hello"

len(s)

s[1]

s + "!"

s * 2

s.upper()

s.replace("e", "3")

The length of the string: 5
The character with index 1: "e"
Concatenation: Hello!
Replication: "HelloHello"
Yields "HELLO"
Yields "H3llo"

Lists

friends = []
values = [16, 3, 2, 13]

for i in range(len(values))
 values[i] = i * i

friends.append("Bob")
friends.insert(0, "Amy")
if "Amy" in friends :
 n = friends.index("Amy")
 friends.pop(n)
else :
 friends.pop()
friends.remove("Bob")

guests = friends + ["Lee", "Zoe"]
scores = [0] * 12
bestFriends = friends[0 : 3]

total = sum(values)
largest = max(values)
values.sort()

 An empty list

 Removes nth
 Removes last

 Concatenation
 Replication
 Slice

 List must contain numbers

Use min to get the smallest

Included Excluded

pyt_cover2.pdf 1 1/11/13 11:44 AM

Python
for
Everyone

Cay Horstmann
San Jose State University

Rance D. Necaise
College of William and Mary

© Anik Messier/Getty Images.

pyt_fm.indd 1 1/31/13 6:40 PM

VP AND EXECUTIVE PUBLISHER	 Don Fowley
EXECUTIVE EDITOR	 Beth Lang Golub
Editorial assistant	 Katherine Willis
EXECUTIVE MARKETING MANAGER	 Christopher Ruel
PRODUCTION MANAGEMENT SERVICES 	 Cindy Johnson
CREATIVE DIRECTOR	 Harry Nolan
SENIOR DESIGNER	 Madelyn Lesure
PHOTO MANAGER	 Hilary Newman
SENIOR PHOTO EDITOR	 Lisa Gee	
COVER CREDIT	 Based on Monty Python and the Holy Grail.

Reproduced with permission of Python (Monty)
Pictures, Ltd.

COVER PHOTOS	 (balloon) © Mikhail Mishchenko/123RF.com;
(binoculars) © Tom Horyn/iStockphoto;
(castle) © Anik Messier/Getty Images;
(cow) © Eric Isselée/Shutterstock;
(parrot) © Eric Isselée/iStockphoto;
(trebuchet) © Stephen Coburn/123RF.com;
(trumpets) © modella/123RF.com.

This book was set in Stempel Garamond by Publishing Services, and printed and bound by Quad/Graphics.
The cover was printed by Quad/Graphics.

This book is printed on acid-free paper. ∞

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and understanding for more
than 200 years, helping people around the world meet their needs and fulfill their aspirations. Our company is
built on a foundation of principles that include responsibility to the communities we serve and where we live
and work. In 2008, we launched a Corporate Citizenship Initiative, a global effort to address the environmental,
social, economic, and ethical challenges we face in our business. Among the issues we are addressing are carbon
impact, paper specifications and procurement, ethical conduct within our business and among our vendors,
and community and charitable support. For more information, please visit our website: www.wiley.com/go/
citizenship.

Copyright © 2014  John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of
the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008, website www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review purposes only, for use in
their courses during the next academic year. These copies are licensed and may not be sold or transferred to a
third party. Upon completion of the review period, please return the evaluation copy to Wiley. Return instruc-
tions and a free of charge return shipping label are available at www.wiley.com/go/returnlabel. Outside of the
United States, please contact your local representative.

ISBN 978-1-118-62613-9
ISBN 978-1-118-64520-8 (BRV)

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

pyt_fm.indd 2 1/31/13 6:40 PM

http://www.wiley.com/go/
http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/returnlabel

For Clora, maybe—C.H.

To my parents
Willard and Ella—R.N.

pyt_fm.indd 3 1/31/13 9:43 AM

pyt_fm.indd 4 1/31/13 9:43 AM

Preface

v

This book is an introduction to computer programming using Python that focuses on
the essentials—and on effective learning. Designed to serve a wide range of student
interests and abilities, it is suitable for a first course in programming for computer
scientists, engineers, and students in other disciplines. No prior programming expe-
rience is required, and only a modest amount of high school algebra is needed. For
pedagogical reasons, the book uses Python 3, which is more regular than Python 2.

Here are the book’s key features:

Present fundamentals first.
The book takes a traditional route, first stressing control structures, functions, proce-
dural decomposition, and the built-in data structures. Objects are used when appro-
priate in the early chapters. Students start designing and implementing their own
classes in Chapter 9.

Guidance and worked examples help students succeed.
Beginning programmers often ask “How do I start? Now what do I do?” Of course,
an activity as complex as programming cannot be reduced to cookbook-style instruc-
tions. However, step-by-step guidance is immensely helpful for building confidence
and providing an outline for the task at hand. “Problem Solving” sections stress the
importance of design and planning. “How To” guides help students with common
programming tasks. Numerous worked examples demonstrate how to apply chapter
concepts to interesting problems.

Practice makes perfect.
Of course, programming students need to be able to implement nontrivial programs,
but they first need to have the confidence that they can succeed. This book contains
a substantial number of self-check questions at the end of each section. “Practice It”
pointers suggest exercises to try after each section. A bank of quiz and test questions
covering computer science concepts and programming skills is available to instructors.

A visual approach motivates the reader and eases navigation.
Photographs present visual analogies that explain the
nature and behavior of computer concepts. Step-by-
step figures illustrate complex program operations.
Syntax boxes and example tables present a variety
of typical and special cases in a compact format. It
is easy to get the “lay of the land” by browsing the
visuals, before focusing on the textual material.

Focus on the essentials while being
technically accurate.
An encyclopedic coverage is not helpful for a begin-
ning programmer, but neither is the opposite—
reducing the material to a list of simplistic bullet points. In this book, the essentials
are presented in digestible chunks, with separate notes that go deeper into good prac-
tices or language features when the reader is ready for the additional information.

© Terraxplorer/iStockphoto.

Visual features help the reader
with navigation.

pyt_fm.indd 5 1/31/13 6:38 PM

vi  Preface 

A Tour of the Book
Figure 1 shows the dependencies between the chapters and how topics are organized.
The core material of the book is:

Chapter 1.	 Introduction
Chapter 2.	 Programming with Numbers and Strings
Chapter 3.	 Decisions
Chapter 4.	 Loops
Chapter 5.	 Functions
Chapter 6.	 Lists
Chapter 7.	 Files and Exceptions
Chapter 8.	 Sets and Dictionaries

Two chapters cover object-oriented programming:

Chapter 9.	 Objects and Classes
Chapter 10.	 Inheritance

Two chapters support a course that goes more deeply into algorithm design and
analysis:

Chapter 11.	 Recursion
Chapter 12.	 Sorting and Searching

Any chapters can be incorporated into a custom print version of this text; ask your
Wiley sales representative for details.

Appendices  Five appendices provide a handy reference for students:

Appendix A.	 The Basic Latin and Latin-1 Subsets of Unicode
Appendix B.	 Python Operator Summary
Appendix C.	 Python Reserved Word Summary
Appendix D.	 The Python Library
Appendix E.	 Binary Numbers and Bit Operations

Problem Solving Strategies
Throughout the book, students will find practical, step-by-step guidance to help
them devise and evaluate solutions to programming problems. Introduced where
they are most relevant, these strategies address barriers to success for many students.
Strategies included are:

•	 Algorithm Design (with pseudocode)
•	 First Do It By Hand (doing sample

calculations by hand)
•	 Flowcharts
•	 Test Cases
•	 Hand-Tracing
•	 Storyboards
•	 Reusable Functions
•	 Stepwise Refinement

•	 Adapting Algorithms
•	 Discovering Algorithms by

Manipulating Physical Objects
•	 Tracing Objects (identifying state

and behavior)
•	 Patterns for Object Data
•	 Thinking Recursively
•	 Estimating the Running Time of

an Algorithm

pyt_fm.indd 6 1/31/13 9:43 AM

Preface  vii

An Optional Graphics Library
Writing programs that create drawings can provide students with effective visualiza-
tions of complex topics. We provide a very simple graphics library that we introduce
in Chapter 2. Subsequent chapters contain worked examples and exercises that use
the library. This material is completely optional.

Exercises
End-of-chapter exercises contain a broad mix of review and programming ques-
tions, with optional questions from the domains of graphics, science, and business.
Designed to engage students, the exercises illustrate the value of programming in
applied fields.

Web Resources
This book is complemented by a complete suite of online resources. Go to www.wiley.
com/college/horstmann to visit the online companion sites, which include

•	 Source code for all examples in the book.
•	 Lecture presentation slides (in PowerPoint format).
•	 Solutions to all review and programming exercises (for instructors only).
•	 A test bank that focuses on skills, not just terminology (for instructors only).

Figure 1   
Chapter  
Dependencies

10. Inheritance

11. Recursion

12. Sorting
and Searching

9. Objects
and Classes

Fundamentals

Object-Oriented Programming

Data Structures & Algorithms

1. Introduction

2. Programming
with Numbers

and Strings

3. Decisions

4. Loops

5. Functions

7. Files and
Exceptions

A gentle
introduction to recursion

is optional.

Sections 7.1 and 7.2
(text file processing) can be

covered with Chapter 4. 6. Iteration6. Lists

6. Iteration
8. Sets and
Dictionaries

pyt_fm.indd 7 1/31/13 7:19 PM

http://www.wiley.com/college/horstmann

viii  Walkthrough 

A Walkthrough of the Learning Aids
The pedagogical elements in this book work together to focus on and reinforce key
concepts and fundamental principles of programming, with additional tips and detail
organized to support and deepen these fundamentals. In addition to traditional fea-
tures, such as chapter objectives and a wealth of exercises, each chapter contains ele-
ments geared to today’s visual learner.

1.5 Analyzing Your First Program 11

1.5 Analyzing Your First Program
 eht si niaga ereH .liated ni margorp nohtyP tsrfi eht ezylana lliw ew ,noitces siht nI

code:

ch01/hello.py

1 # My first Python program.
2 print("Hello, World!")

A Python program contains one or more lines of instructions or statements that will
be translated and executed by the Python interpreter. The first line

My first Python program.

is a comment. Comments begin with # and are not statements. They provide descrip-
tive information to the programmer. Comments will be discussed in more detail in
Section 2.1.5.

The second line contains a statement
print("Hello, World!")

that prints or displays a line of text, namely “Hello, World!”. In this statement, we
call a function named print and pass it the information to be displayed. A function is
a collection of programming instructions that carry out a particular task. We do not
have to implement this function, it is part of the Python language. We simply want
the function to perform its intended task, namely to print a value.

To use, or call, a function in Python, you need to specify

1. The name of the function you want to use (in this case, print).
2. Any values the function needs to carry out its task (in this case, "Hello, World!").

The technical term for such a value is an argument. Arguments are enclosed in
parentheses with multiple arguments separated by commas. The number of
arguments required depends on the function.

A comment provides
information to
the programmer.

A function is
a collection of
instructions
that perform a
particular task.

A function is called
by specifying the
function name and
its arguments.

Syntax 1.1 print Statement

print("The answer is", 6 + 7, "!")

All arguments are optional. If no arguments
are given, a blank line is printed.

The values to be printed,
one after the other,
separated by a blank space.

print()
print(value1, value2, ..., valuen)

Syntax

Throughout each chapter,
margin notes show where
new concepts are introduced
and provide an outline of key ideas.

Annotated syntax boxes
provide a quick, visual overview
of new language constructs.

Like a variable in a computer
program, a parking space has
an identifier and a contents.

Analogies to everyday objects are
used to explain the nature and behavior
of concepts such as variables, data
types, loops, and more.

Annotations explain required
components and point to more
information on common errors
or best practices associated
with the syntax.

pyt_fm.indd 8 1/31/13 9:43 AM

Walkthrough  ix

6.6 Problem Solving: Discovering Algorithms by Manipulating Physical Objects 311

Now how does that help us with our problem, switching the first and the second
half of the list?

Let’s put the first coin into place, by swapping it with the fifth coin. However, as
Python programmers, we will say that we swap the coins in positions 0 and 4:

Problem Solving sections teach
techniques for generating ideas and
evaluating proposed solutions, often
using pencil and paper or other
artifacts. These sections emphasize
that most of the planning and problem
solving that makes students successful
happens away from the computer.

Step 1 Determine the inputs and outputs.

In our sample problem, we have these inputs:
• purchase price1 and fuel efficiency1, the price and fuel efficiency (in mpg) of the first car
• purchase price2 and fuel efficiency2, the price and fuel efficiency of the second car
We simply want to know which car is the better buy. That is the desired output.

HOW TO 1.1 Describing an Algorithm with Pseudocode

This is the first of many “How To” sections in this book that give you step-by-step proce-
dures for carrying out important tasks in developing computer programs.

Before you are ready to write a program in Python, you need to develop an algorithm—a
method for arriving at a solution for a particular problem. Describe the algorithm in pseudo-
code: a sequence of precise steps formulated in English.

Problem Statement You have the choice of buying two
cars. One is more fuel efficient than the other, but also more
expensive. You know the price and fuel efficiency (in miles per
gallon, mpg) of both cars. You plan to keep the car for ten years.
Assume a price of $4 per gallon of gas and usage of 15,000 miles
per year. You will pay cash for the car and not worry about
financing costs. Which car is the better deal?

Step 1 Determine the inputs and outputs.

The inputs are the floor dimensions (length × width),
measured in inches. The output is a tiled floor.

Step 2 Break down the problem into smaller tasks.

A natural subtask is to lay one row of tiles. If you can
solve that task, then you can solve the problem by lay ing
one row next to the other, starting from a wall, until you
reach the opposite wall.

WORKED EXAMPLE 1.1 Writing an Algorithm for Tiling a Floor

Problem Statement Make a plan for tiling a rectangular bathroom floor with alternating
black and white tiles measuring 4 × 4 inches. The floor dimensions, measured in inches, are
multiples of 4.

How To guides give step-by-step
guidance for common programming
tasks, emphasizing planning and
testing. They answer the beginner’s
question, “Now what do I do?” and
integrate key concepts into a
problem-solving sequence.

Table 1 Number Literals in Python

Number Type Comment

6 int An integer has no fractional part.

–6 int Integers can be negative.

0 int Zero is an integer.

0.5 float A number with a fractional part has type float.

1.0 float An integer with a fractional part .0 has type float.

1E6 float A number in exponential notation: 1 × 106 or 1000000.
Numbers in exponential notation always have type float.

2.96E-2 float Negative exponent: 2.96 × 10–2 = 2.96 / 100 = 0.0296

100,000 Error: Do not use a comma as a decimal separator.

3 1/2 Error: Do not use fractions; use decimal notation: 3.5.

Example tables support beginners
with multiple, concrete examples.
These tables point out common
errors and present another quick
reference to the section’s topic.

Worked Examples apply
the steps in the How To to a
different example, showing
how they can be used to
plan, implement, and test
a solution to another
programming problem.

Memorable photos reinforce
analogies and help students
remember the concepts.

A recipe for a fruit pie may say to use any kind of fruit.
Here, “fruit” is an example of a parameter variable.
Apples and cherries are examples of arguments.

pie(fruit) pie(fruit)

Optional graphics programming
examples demonstrate constructs
with engaging drawings, visually
reinforcing programming concepts.

pyt_fm.indd 9 1/31/13 9:43 AM

x  Walkthrough 

g

Figure 3
Parameter P

1 Function call result1 =

sideLength =

2 Initializing function parameter variable result1 =

sideLength = 2

3 About to return to the caller result1 =

sideLength =

volume = 8

2

4 After function call result1 = 8

result1 = cubeVolume(2)

volume = sideLength ** 3
return volume

result1 = cubeVolume(2)

result1 = cubeVolume(2)

Consider the function call illustrated in Figure 3:
result1 = cubeVolume(2)

• The parameter variable sideLength of the cubeVolume function is created when the
function is called. 1

• The parameter variable is initialized with the value of the argument that was
passed in the call. In our case, sideLength is set to 2. 2

• The function computes the expression sideLength ** 3, which has the value 8. That
value is stored in the variable volume. 3

• The function returns. All of its variables are removed. The return value is trans-
ferred to the caller, that is, the function calling the cubeVolume function. The caller
puts the return value in the result1 variable. 4

ch04/doubleinv.py

1 ##
2 # This program computes the time required to double an investment.
3 #
4
5 # Create constant variables.
6 RATE = 5.0
7 INITIAL_BALANCE = 10000.0
8 TARGET = 2 * INITIAL_BALANCE
9

10 # Initialize variables used with the loop.
11 balance = INITIAL_BALANCE
12 year = 0
13
14 # Count the years required for the investment to double.
15 while balance < TARGET :
16 year = year + 1
17 interest = balance * RATE / 100
18 balance = balance + interest
19
20 # Print the results.
21 print("The investment doubled after", year, "years.")

25. Write the for loop of the investment.py program as a while loop.
26. How many numbers does this loop print?

for n in range(10, -1, -1) :
 print(n)

27. Write a for loop that prints all even numbers between 10 and 20 (inclusive).
28. Write a for loop that computes the total of the integers from 1 to n.
29. How would you modify the loop of the investment.py program to print all bal-

ances until the investment has doubled?

Practice It Now you can try these exercises at the end of the chapter: R4.18, R4.19, P4.8.

S E L F C H E C K
Self-check exercises at the
end of each section are designed
to make students think through
the new material—and can
spark discussion in lecture.

•• Business P4.28 Currency conversion. Write a program
that first asks the user to type today’s
price for one dollar in Japanese yen,
then reads U.S. dollar values and
converts each to yen. Use 0 as a sentinel.

•• Business P4.29 Write a program that first asks the user
to type in today’s price of one dollar
in Jap anese yen, then reads U.S. dollar

l d h

•• Graphics P2.30 Write a program that displays the Olympic rings. Color the rings in the Olympic
colors.

 Make a bar chart to plot the following data set. Label each bar.

Bridge Name Longest Span (ft)

Golden Gate 4,200

Brooklyn 1,595

Delaware Memorial 2,150

• Science P4.37 Radioactive decay of radioactive materials can be
modeled by the equation A = A0e-t (log 2 /h), where A is
the amount of the material at time t, A0 is the amount
at time 0, and h is the half-life.
Technetium-99 is a radioisotope that is used in imaging
of the brain. It has a half-life of 6 hours. Your program
should display the relative amount A /A0 in a patient
body every hour for 24 hours after receiving a dose.

Program listings are carefully
designed for easy reading, going
well beyond simple color coding.
Methods and functions are set
off by a subtle outline.

Optional science, graphics, and
business exercises engage
students with realistic applications.

Figure 2
Execution of the
doubleinv.py Loop

while balance < TARGET :
 year = year + 1
 interest = balance * RATE / 100
 balance = balance + interest

print(year)

while balance < TARGET :
 year = year + 1
 interest = balance * RATE / 100
 balance = balance + interest

Check the loop condition1
The condition is true

while balance < TARGET :
 year = year + 1
 interest = balance * RATE / 100
 balance = balance + interest

Execute the statements in the loop2

while balance < TARGET :
 year = year + 1
 interest = balance * RATE / 100
 balance = balance + interest

Check the loop condition again3
The condition is still true

while balance < TARGET :
 year = year + 1
 interest = balance * RATE / 100
 balance = balance + interest

After 15 iterations4
The condition is

no longer true

Execute the statement following the loop5

.

.

.

year = 0

balance = 10000.0

year = 1

interest = 500.0

interest = 500.0

interest = 989.97

interest = 989.97

balance = 10500.0

year = 1

balance = 10500.0

year = 15

balance = 20789.28

year = 15

balance = 20789.28

Progressive figures trace code
segments to help students visualize
the program flow. Color is used
consistently to make variables and
other elements easily recognizable.

pyt_fm.indd 10 1/31/13 9:43 AM

Walkthrough  xi

Exact Comparison of Floating-Point Numbers

Floating-point numbers have only a limited precision, and cal-
culations can introduce round off errors. You must take these
inevitable roundoffs into account when comparing floating-
point numbers. For example, the following code multiplies the
square root of 2 by itself. Ide ally, we expect to get the answer 2:

from math import sqrt

r = sqrt(2.0)
if r * r == 2.0 :
 print("sqrt(2.0) squared is 2.0")
else :
 print("sqrt(2.0) squared is not 2.0 but", r * r)

This program displays

sqrt(2.0) squared is not 2.0 but 2.0000000000000004

It does not make sense in most circumstances to compare float ing-point numbers exactly.
Instead, we should test whether they are close enough. That is, the magnitude of their differ-
ence should be less than some threshold. Mathematically, we would write that x and y are close
enough if

Common Error 3.2

Take limited precision into
account when comparing
floating-point numbers.

Common Errors describe the kinds
of errors that students often make,
with an explanation of why the errors
occur, and what to do about them.

Hand-Tracing

A very useful technique for understanding whether a pro gram
works correctly is called hand-tracing. You simulate the pro-
gram’s activity on a sheet of paper. You can use this method with
pseudocode or Python code.

Get an index card, a cocktail napkin, or whatever sheet of paper
is within reach. Make a column for each variable. Have the pro-
gram code ready. Use a marker, such as a paper clip, to mark the
current statement. In your mind, execute statements one at a time.
Every time the value of a variable changes, cross out the old value
and write the new value below the old one.

Let’s trace the taxes.py program on page 107 with the inputs from
the program run that follows it. In lines 12 and 13, income and
maritalStatus are initialized by input statements.

5 # Initialize constant variables for the tax rates and rate limits.
6 RATE1 = 0.10
7 RATE2 = 0.25
8 RATE1_SINGLE_LIMIT = 32000.0
9 RATE1_MARRIED_LIMIT = 64000.0

10
11 # Read income and marital status.
12 income = float(input("Please enter your income: "))
13 maritalStatus = input("Please enter s for single, m for married: ")

In lines 16 and 17, tax1 and tax2 are
initialized to 0.0.

tax1 = 0.0
tax2 = 0.0

Programming Tip 3.2

Hand-tracing helps you
understand whether a
program works correctly.

 marital
 tax1 tax2 income status

 80000 m

 marital
 tax1 tax2 income status

 0 0 80000 m

When computers were first
invented in the 1940s, a
computer filled an entire

room. The photo below shows the
ENIAC (electronic numerical integra-
tor and computer), completed in 1946
at the University of Pennsylvania.
The ENIAC was used by the military
to compute the trajectories of projec-
tiles. Nowadays, computing facilities
of search engines, Internet shops, and
social networks fill huge buildings
called data centers. At the other end of
the spectrum, computers are all around
us. Your cell phone has a computer
inside, as do many credit cards and fare
cards for public transit. A modern car
has several computers––to control the
engine, brakes, lights, and the radio.

This transit card contains a computer.

The advent of ubiqui-
tous computing changed
many aspects of our
lives. Factories used
to employ people to
do repetitive assembly
tasks that are today car-
ried out by computer-
controlled robots, oper-
ated by a few people
who know how to work
with those computers.
Books, music, and mov-
ies nowadays are often
consumed on comput-
ers, and computers are
almost always involved
in their production. The book that
you are reading right now could

not have been written without
computers.

Computing & Society 1.1 Computers Are Everywhere

Short-Circuit Evaluation of Boolean Operators

The and and or operators are computed using short-circuit evalu-
ation. In other words, logical expressions are evaluated from left to
right, and evaluation stops as soon as the truth value is determined.
When an and is evaluated and the first condition is false, the second
condition is not evaluated, because it does not matter what the out-
come of the second test is.

For example, consider the expression

quantity > 0 and price / quantity < 10

Suppose the value of quantity is zero. Then the test quantity > 0 fails, and the second test is not
attempted. That is just as well, because it is illegal to divide by zero.

Similarly, when the first condition of an or expres-
sion is true, then the remainder is not evaluated because
the result must be true.

In a short circuit, electricity travels along the path of
least resistance. Similarly, short-circuit evaluation

takes the fastest path for computing the result
of a Boolean expression.

Special Topic 3.4

The and and or
operators are
computed using
short-circuit
evaluation: As soon
as the truth value
is determined, no
further conditions
are evaluated.

Programming Tips explain
good programming practices,
and encourage students to be
more productive with tips and
techniques such as hand-tracing.

Computing & Society presents social
and historical information on computing—
for interest and to fulfill the “historical
and social context” requirements of the
ACM/IEEE curriculum guidelines.

Special Topics present optional
topics and provide additional
explanation of others.

16
17

pyt_fm.indd 11 1/31/13 9:43 AM

xii A cknowledgments 

Acknowledgments
Many thanks to Beth Lang Golub, Don Fowley, Katherine Willis, Katie Singleton,
Lisa Gee, and Sujin Hong at John Wiley & Sons, and Vickie Piercey at Publishing
Services for their help with this project. An especially deep acknowledgment and
thanks goes to Cindy Johnson for her hard work, sound judgment, and amazing
attention to detail.

We are grateful to Ben Stephenson, University of Calgary, for his excellent work
on the supplemental material.

Many thanks to the individuals who provided feedback, reviewed the manuscript,
made valuable suggestions, and brought errors and omissions to our attention. They
include:

Claude Anderson, Rose Hulman Institute of Technology
Gokcen Cilingir, Washington State University
Dirk Grunwald, University of Colorado Boulder
Andrew Harrington, Loyola University Chicago
Debbie Keen, University of Kentucky
Nicholas A. Kraft, University of Alabama
Aaron Langille, Laurentian University
Shyamal Mitra, University of Texas Austin
John Schneider, Washington State University
Amit Singhal, University of Rochester
Ben Stephenson, University of Calgary
Dave Sullivan, Boston University
Jay Summet, Georgia Institute of Technology
James Tam, University of Calgary
Krishnaprasad Thirunarayan, Wright State University
Peter Tucker, Whitworth University
Frances VanScoy, West Virginia University

pyt_fm.indd 12 1/31/13 9:43 AM

CONTENTS

xiii

Preface  v

Special Features  xviii

Introduction  1

1.1	 Computer Programs   2

1.2	 The Anatomy of a Computer   3

1.3	 The Python Programming Language   5

1.4	 Becoming Familiar with Your Programming Environment   6

1.5	 Analyzing Your First Program   11

1.6	 Errors   14

1.7	 Problem Solving: Algorithm Design   16

Programming with numbers and strings  29

2.1	 Variables   30

2.2	 Arithmetic   37

2.3	 Problem Solving: First Do It By Hand   45

2.4	 Strings   48

2.5	 Input and Output   55

2.6	 Graphics: Simple Drawings   65

Decisions  91

3.1	 The if Statement   92

3.2	 Relational Operators   97

3.3	 Nested Branches   106

3.4	 Multiple Alternatives   109

3.5	 Problem Solving: Flowcharts   112

3.6	 Problem Solving: Test Cases   116

3.7	 Boolean Variables and Operators   118

3.8	 Analyzing Strings   124

3.9	 Application: Input Validation   127

Chapter 1 

Chapter 2 

Chapter 3 

pyt_fm.indd 13 1/31/13 9:43 AM

xiv C ontents 

Loops  155

4.1	 The while Loop   156

4.2	 Problem Solving: Hand-Tracing   163

4.3	 Application: Processing Sentinel Values   166

4.4	 Problem Solving: Storyboards   170

4.5	 Common Loop Algorithms   173

4.6	 The for Loop   177

4.7	 Nested Loops   184

4.8	 Processing Strings   190

4.9	 Application: Random Numbers and Simulations   194

Functions  219

5.1	 Functions as Black Boxes   220

5.2	 Implementing and Testing Functions   222

5.3	 Parameter Passing   226

5.4	 Return Values   229

5.5	 Functions Without Return Values   237

5.6	 Problem Solving: Reusable Functions   239

5.7	 Problem Solving: Stepwise Refinement   242

5.8	 Variable Scope   251

5.9	 Recursive Functions (Optional)   258

Lists  277

6.1	 Basic Properties of Lists   278

6.2	 List Operations   284

6.3	 Common List Algorithms   290

6.4	 Using Lists with Functions   297

6.5	 Problem Solving: Adapting Algorithms   303

6.6	 Problem Solving: Discovering Algorithms by Manipulating
Physical Objects   310

6.7	 Tables   314

Chapter 4 

Chapter 5 

Chapter 6 

pyt_fm.indd 14 1/31/13 9:43 AM

Contents  xv

 Files and Exceptions  341

7.1	 Reading and Writing Text Files   342

7.2	 Text Input and Output   346

7.3	 Command Line Arguments   357

7.4	 Binary Files and Random Access (Optional)   368

7.5	 Exception Handling   377

7.6	 Application: Handling Input Errors   383

Sets and Dictionaries  403

8.1	 Sets   404

8.2	 Dictionaries   414

8.3	 Complex Structures   424

Objects and classes  443

9.1	 Object-Oriented Programming   444

9.2	 Implementing a Simple Class   446

9.3	 Specifying the Public Interface of a Class   450

9.4	 Designing the Data Representation   452

9.5	 Constructors   454

9.6	 Implementing Methods   457

9.7	 Testing a Class   461

9.8	 Problem Solving: Tracing Objects   469

9.9	 Problem Solving: Patterns for Object Data   472

9.10	 Object References   478

9.11	 Application: Writing a Fraction Class   482

Inheritance  507

10.1	 Inheritance Hierarchies   508

10.2	 Implementing Subclasses   513

10.3	 Calling the Superclass Constructor   517

10.4	 Overriding Methods   521

10.5	 Polymorphism   524

10.6	 Application: A Geometric Shape Class Hierarchy   538

Chapter 7 

Chapter 8 

Chapter 9 

Chapter 10 

pyt_fm.indd 15 1/31/13 9:43 AM

xvi C ontents 

RECURSION  555

11.1	 Triangle Numbers Revisited   556

11.2	 Problem Solving: Thinking Recursively   560

11.3	 Recursive Helper Functions   565

11.4	 The Efficiency of Recursion   566

11.5	 Permutations   571

11.6	 Backtracking   575

11.7	 Mutual Recursion   583

Sorting and searching  597

12.1	 Selection Sort   598

12.2	 Profiling the Selection Sort Algorithm   600

12.3	 Analyzing the Performance of the Selection Sort Algorithm   602

12.4	 Merge Sort   606

12.5	 Analyzing the Merge Sort Algorithm   609

12.6	 Searching   614

12.7	 Problem Solving: Estimating the Running Time of an Algorithm   617

Appendix A	 THE BASIC LATIN AND LATIN-1 SUBSETS OF UNICODE    A-1

Appendix B	 Python Operator Summary   A-4

Appendix C	 Python Reserved Word Summary   A-6

Appendix D	 THE Python Standard LIBRARY   A-8

Appendix E	 Binary Numbers and Bit Operations   A-29

Glossary   G-1

Index   I-1

Credits   C-1

Chapter 11 

Chapter 12 

Appendices

pyt_fm.indd 16 1/31/13 9:43 AM

Contents  xvii

  Syntax Boxes

Assignment   31

Calling Functions   40
Constructor   455

for Statement   178
for Statement with range Function   179
Function Definition   223

Handling Exceptions   379

if Statement   94

Lists   279

Method Definition   458

Opening and Closing FIles   343

print Statement   12
Program with Functions   224

Raising an Exception   378

Set and Dictionary Literals   415
String Format Operator   57
Subclass Constructor   517
Subclass Definition   514

The finally Clause   381

while Statement   157

Alphabetical list of

pyt_fm.indd 17 1/31/13 9:43 AM

xviii  Special Features

© Tom Horyn/iStockphoto.

© Steve Simzer/iStockphoto.

CHAPTER

© Eric Isselée/iStockphoto.

Programming
Tips Special Topics Random Facts

Interactive Mode	 9
Backup Copies 	 10

The Python Interpreter	 10 Computers Are Everywhere	 5

Choose Descriptive
Variable Names 	 36

Do Not Use Magic Numbers 	 37
Use Spaces in Expressions 	 44
Don’t Wait to Convert 	 60

Other Ways to Import Modules	44
Combining Assignment and

Arithmetic 	 44
Line Joining 	 45
Character Values 	 53
Escape Sequences 	 54

International Alphabets and
Unicode 	 54

The Pentium Floating-
Point Bug  	 65

Avoid Duplication in Branches 	 96
Hand-Tracing	 108
Make a Schedule and Make Time

for Unexpected Problems 	 117
Readability	 122

Conditional Expressions	  97
Lexicographic Ordering

of Strings 	 101
Chaining Relational

Operators 	 122
Short-Circuit Evaluation of

Boolean Operators 	 123
De Morgan’s Law	 123
Terminating a Program 	 130
Text Input in Graphical

Programs 	 131

Denver’s Luggage
Handling System 	 116

Artificial Intelligence 	 135

Count Iterations 	 181 Processing Sentinel Values
with a Boolean Variable	  169

Redirection of Input and
 Output	 169

Special Form of the print
Function	  188

The First Bug	 162
Software Piracy	 200

Function Comments	 226
Do Not Modify Parameter

Variables	 228
Keep Functions Short	 246
Tracing Functions 	 247
Stubs	  248
Avoid Global Variables 	 253

Using Single-Line Compound
Statements 	 230

Personal Computing 	 257

Common
Errors

How Tos
 and

Worked Examples

1	 Introduction Misspelling Words	 15 Describing an Algorithm
with Pseudocode	 19

Writing an Algorithm for
Tiling a Floor	 20

2	Programming with
Numbers and Strings

Using Undefined Variables	 36
Roundoff Errors	 43
Unbalanced Parentheses	 43

Computing Travel Time 	 47
Writing Simple Programs	  60
Computing the Cost

of Stamps 	 63
Drawing Graphical Shapes 	 72

3	Decisions Tabs	 96
Exact Comparison of Floating-

Point Numbers	 101
Confusing and and
or Conditions	 121

Implementing an
if Statement	 102

Extracting the Middle	 104
Intersecting Circles	 131

4	Loops Don’t Think “Are We
There Yet?”	 160

Infinite Loops	 161
Off-by-One Errors	 161

Writing a Loop	 182
Average Exam Grades	 188
Bull’s Eye	 197

5	Functions Trying to Modify Arguments  228 Implementing a Function	 231
Generating Random

Passwords	 233
Calculating a Course Grade	 248
Rolling Dice	 254
Thinking Recursively	 260

pyt_fm.indd 18 1/31/13 9:43 AM

Special Features  xix

© Mikhail Mishchenko/123RF.com. © modella/123RF.com.

© Stephen Coburn/123RF.com.

Programming
Tips Special Topics Random Facts

Interactive Mode	 9
Backup Copies 	 10

The Python Interpreter	 10 Computers Are Everywhere	 5

Choose Descriptive
Variable Names 	 36

Do Not Use Magic Numbers 	 37
Use Spaces in Expressions 	 44
Don’t Wait to Convert 	 60

Other Ways to Import Modules	44
Combining Assignment and

Arithmetic 	 44
Line Joining 	 45
Character Values 	 53
Escape Sequences 	 54

International Alphabets and
Unicode 	 54

The Pentium Floating-
Point Bug  	 65

Avoid Duplication in Branches 	 96
Hand-Tracing	 108
Make a Schedule and Make Time

for Unexpected Problems 	 117
Readability	 122

Conditional Expressions	  97
Lexicographic Ordering

of Strings 	 101
Chaining Relational

Operators 	 122
Short-Circuit Evaluation of

Boolean Operators 	 123
De Morgan’s Law	 123
Terminating a Program 	 130
Text Input in Graphical

Programs 	 131

Denver’s Luggage
Handling System 	 116

Artificial Intelligence 	 135

Count Iterations 	 181 Processing Sentinel Values
with a Boolean Variable	  169

Redirection of Input and
 Output	 169

Special Form of the print
Function	  188

The First Bug	 162
Software Piracy	 200

Function Comments	 226
Do Not Modify Parameter

Variables	 228
Keep Functions Short	 246
Tracing Functions 	 247
Stubs	  248
Avoid Global Variables 	 253

Using Single-Line Compound
Statements 	 230

Personal Computing 	 257

Common
Errors

How Tos
 and

Worked Examples

1	 Introduction Misspelling Words	 15 Describing an Algorithm
with Pseudocode	 19

Writing an Algorithm for
Tiling a Floor	 20

2	Programming with
Numbers and Strings

Using Undefined Variables	 36
Roundoff Errors	 43
Unbalanced Parentheses	 43

Computing Travel Time 	 47
Writing Simple Programs	  60
Computing the Cost

of Stamps 	 63
Drawing Graphical Shapes 	 72

3	Decisions Tabs	 96
Exact Comparison of Floating-

Point Numbers	 101
Confusing and and
or Conditions	 121

Implementing an
if Statement	 102

Extracting the Middle	 104
Intersecting Circles	 131

4	Loops Don’t Think “Are We
There Yet?”	 160

Infinite Loops	 161
Off-by-One Errors	 161

Writing a Loop	 182
Average Exam Grades	 188
Bull’s Eye	 197

5	Functions Trying to Modify Arguments  228 Implementing a Function	 231
Generating Random

Passwords	 233
Calculating a Course Grade	 248
Rolling Dice	 254
Thinking Recursively	 260

pyt_fm.indd 19 1/31/13 9:43 AM

xx  Special Features

© Tom Horyn/iStockphoto.

© Steve Simzer/iStockphoto.

CHAPTER

© Eric Isselée/iStockphoto.

Programming
Tips Special Topics Random Facts

Use Lists for Sequences of
Related Items  	 283

Reverse Subscripts	 282
Slices	 290
Call by Value and

Call by Reference	 300
Tuples	 301
Functions with a Variable

Number of Arguments 	 301
Tuple Assignment 	 302
Returning Multiple Values

with Tuples	 302
Tables with Variable

Row Lengths	 321

Computer Viruses	 283

Raise Early, Handle Late 	 382
Do Not Use except and finally

in the Same try Statement 	 382

Reading the Entire File 	 355
Regular Expressions 	 355
Character Encodings 	 356
Reading Web Pages 	 357
The with Statement	 383

Encryption Algorithms	 366
The Ariane Rocket Incident	 390

Use Python Sets, Not Lists, for
Efficient Set Operations	 412

Hashing 	 413
Iterating over

Dictionary Items 	 421
Storing Data Records 	 421
User Modules 	 430

Standardization	 414

Make all Instance Variables Pri-
vate, Most Methods Public 	 453

Define Instance Variables
Only in the Constructor 	 460

Default and Named
Arguments 	 456

Class Variables 	 460
Object Types and Instances 	 490

Electronic Voting Machines	 477
Open Source and

Free Software	 494

Use a Single Class for Variation
in Values, Inheritance for
Variation in Behavior	 511

The Cosmic Superclass:
object	 512

Subclasses and Instances	 528
Dynamic Method Lookup	 528
Abstract Classes	 529

Recursion with Objects	 560 The Limits of
Computation	 574

Searching and Sorting	 622 Oh, Omega, and Theta	 604
Insertion Sort	 605
The Quicksort Algorithm	 611
Comparing Objects	 623

The First Programmer	 613

Common
Errors

How Tos
 and

Worked Examples

6	Lists Out-of-Range Errors 	 282 Working with Lists 	 304
Rolling the Dice 	 306
A World Population Table 	 319
Drawing Regular Polygons	 322

7	Files and Exceptions Backslashes in File Names 	 346 Processing Text Files 	 360
Analyzing Baby Names 	 363
Displaying a Scene File 	 387

8	Sets and Dictionaries Unique Words 	 411
Translating Text Messages 	 422
Pie Charts 	 430

9	Objects and Classes Trying to Call a Constructor 	 456 Implementing a Class 	 463
Implementing a Bank

Account Class 	 466
A Die Class 	 491

10	 Inheritance Confusing Super- and
Subclasses	 516

Forgetting to Use the super
Function When Invoking a
Superclass Method	 524

Don’t Use Type Tests	 530

Developing an Inheritance
Hierarchy	 530

Implementing an Employee
Hierarchy for Payroll
Processing	 535

11	Recursion Infinite Recursion 	 559 Finding Files 	 564
Towers of Hanoi	 580

12	Sorting and Searching Enhancing the Insertion
Sort Algorithm	 623

pyt_fm.indd 20 1/31/13 9:43 AM

Special Features  xxi

© Mikhail Mishchenko/123RF.com. © modella/123RF.com.

© Stephen Coburn/123RF.com.

Programming
Tips Special Topics Random Facts

Use Lists for Sequences of
Related Items  	 283

Reverse Subscripts	 282
Slices	 290
Call by Value and

Call by Reference	 300
Tuples	 301
Functions with a Variable

Number of Arguments 	 301
Tuple Assignment 	 302
Returning Multiple Values

with Tuples	 302
Tables with Variable

Row Lengths	 321

Computer Viruses	 283

Raise Early, Handle Late 	 382
Do Not Use except and finally

in the Same try Statement 	 382

Reading the Entire File 	 355
Regular Expressions 	 355
Character Encodings 	 356
Reading Web Pages 	 357
The with Statement	 383

Encryption Algorithms	 366
The Ariane Rocket Incident	 390

Use Python Sets, Not Lists, for
Efficient Set Operations	 412

Hashing 	 413
Iterating over

Dictionary Items 	 421
Storing Data Records 	 421
User Modules 	 430

Standardization	 414

Make all Instance Variables Pri-
vate, Most Methods Public 	 453

Define Instance Variables
Only in the Constructor 	 460

Default and Named
Arguments 	 456

Class Variables 	 460
Object Types and Instances 	 490

Electronic Voting Machines	 477
Open Source and

Free Software	 494

Use a Single Class for Variation
in Values, Inheritance for
Variation in Behavior	 511

The Cosmic Superclass:
object	 512

Subclasses and Instances	 528
Dynamic Method Lookup	 528
Abstract Classes	 529

Recursion with Objects	 560 The Limits of
Computation	 574

Searching and Sorting	 622 Oh, Omega, and Theta	 604
Insertion Sort	 605
The Quicksort Algorithm	 611
Comparing Objects	 623

The First Programmer	 613

Common
Errors

How Tos
 and

Worked Examples

6	Lists Out-of-Range Errors 	 282 Working with Lists 	 304
Rolling the Dice 	 306
A World Population Table 	 319
Drawing Regular Polygons	 322

7	Files and Exceptions Backslashes in File Names 	 346 Processing Text Files 	 360
Analyzing Baby Names 	 363
Displaying a Scene File 	 387

8	Sets and Dictionaries Unique Words 	 411
Translating Text Messages 	 422
Pie Charts 	 430

9	Objects and Classes Trying to Call a Constructor 	 456 Implementing a Class 	 463
Implementing a Bank

Account Class 	 466
A Die Class 	 491

10	 Inheritance Confusing Super- and
Subclasses	 516

Forgetting to Use the super
Function When Invoking a
Superclass Method	 524

Don’t Use Type Tests	 530

Developing an Inheritance
Hierarchy	 530

Implementing an Employee
Hierarchy for Payroll
Processing	 535

11	Recursion Infinite Recursion 	 559 Finding Files 	 564
Towers of Hanoi	 580

12	Sorting and Searching Enhancing the Insertion
Sort Algorithm	 623

pyt_fm.indd 21 1/31/13 9:43 AM

pyt_fm.indd 22 1/31/13 9:43 AM

1C h a p t e r

1

Introduction

To learn about computers
and programming

To write and run your first Python program

To recognize compile-time and run-time errors

To describe an algorithm with pseudocode

C h a p t e r G o a l s

C h a p t e r C o n t e n t s

1.1  Computer Programs  2

1.2  The Anatomy of a Computer  3

Computing & Society 1.1: Computers Are
Everywhere  5

1.3  The Python Programming
Language  5

1.4  Becoming Familiar with Your
Programming Environment  6

Programming Tip 1.1:  Interactive Mode  9
Programming Tip 1.2: Backup Copies  10
Special Topic 1.1: The Python Interpreter  10

1.5  Analyzing Your First
Program  11

Syntax 1.1: print Statement  12

1.6  Errors  14

Common Error 1.1: Misspelling Words  15

1.7  Problem Solving:
Algorithm Design  16

How To 1.1: Describing an Algorithm with
Pseudocode  19

Worked Example 1.1: Writing an Algorithm for
Tiling a Floor  20

© JanPietruszka/iStockphoto.

pyt_ch01_intro.indd 1 1/26/13 11:54 AM

2

Just as you gather tools, study a project, and make a plan for
tackling it, in this chapter you will gather up the basics you
need to start learning to program. After a brief introduction
to computer hardware, software, and programming in
general, you will learn how to write and run your first
Python program. You will also learn how to diagnose and
fix programming errors, and how to use pseudocode to
describe an algorithm—a step-by-step description of how
to solve a problem—as you plan your computer programs.

1.1  Computer Programs
You have probably used a computer for work or fun. Many people use computers
for everyday tasks such as electronic banking or writing a term paper. Computers are
good for such tasks. They can handle repetitive chores, such as totaling up numbers
or placing words on a page, without getting bored or exhausted.

The flexibility of a computer is quite an amazing phenomenon. The same machine
can balance your checkbook, lay out your term paper, and play a game. In contrast,
other machines carry out a much narrower range of tasks; a car drives and a toaster
toasts. Computers can carry out a wide range of tasks because they execute different
programs, each of which directs the computer to work on a specific task.

The computer itself is a machine that stores data (numbers, words, pictures), inter-
acts with devices (the monitor, the sound system, the printer), and executes programs.
A computer program tells a computer, in minute detail, the sequence of steps that are
needed to fulfill a task. The physical computer and peripheral devices are collectively
called the hardware. The programs the computer executes are called the software.

Today’s computer programs are so sophisticated that it is hard to believe that they
are composed of extremely primitive instructions. A typical instruction may be one
of the following:

•	 Put a red dot at a given screen position.
•	 Add up two numbers.
•	 If this value is negative, continue the program at a certain instruction.

The computer user has the illusion of smooth interaction because a program contains
a huge number of such instructions, and because the computer can execute them at
great speed.

The act of designing and implementing computer programs is called program-
ming. In this book, you will learn how to program a computer—that is, how to direct
the computer to execute tasks.

To write a computer game with motion and sound effects or a word processor
that supports fancy fonts and pictures is a complex task that requires a team of many
highly-skilled programmers. Your first programming efforts will be more mundane.
The concepts and skills you learn in this book form an important foundation, and
you should not be disappointed if your first programs do not rival the sophisticated
software that is familiar to you. Actually, you will find that there is an immense thrill
even in simple programming tasks. It is an amazing experience to see the computer
precisely and quickly carry out a task that would take you hours of drudgery, to

Computers
execute very basic
instructions in
rapid succession.

A computer program
is a sequence
of instructions
and decisions.

Programming is the
act of designing
and implementing
computer programs.

© JanPietruszka/iStockphoto.

make small changes in a program that lead to immediate improvements, and to see the
computer become an extension of your mental powers.

1.	 What is required to play music on a computer?
2.	 Why is a CD player less flexible than a computer?
3.	 What does a computer user need to know about programming in order to play a

video game?

1.2  The Anatomy of a Computer
To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. We will look at a personal
computer. Larger computers have faster, larger, or more powerful components, but
they have fundamentally the same design.

At the heart of the computer lies the central processing unit (CPU) (see Figure 1).
The inside wiring of the CPU is enormously complicated. The CPUs used for per
sonal computers at the time of this writing are composed of several hundred million
structural elements, called transistors.

The CPU performs program control and data processing. That is, the CPU locates
and executes the program instructions; it carries out arithmetic operations such as
addition, subtraction, multiplication, and division; it fetches data from external mem-
ory or devices and places processed data into storage.

There are two kinds of storage. Primary storage is made from memory chips:
electronic circuits that can store data, provided they are supplied with electric power.
Secondary storage, usually a hard disk (see Figure 2), provides slower and less
expensive storage that persists without electricity. A hard disk consists of rotating
platters, which are coated with a magnetic material, and read/write heads, which can
detect and change the magnetic flux on the platters.

The computer stores both data and programs. They are located in secondary stor-
age and loaded into memory when the program starts. The program then updates the
data in memory and writes the modified data back to secondary storage.

© Nicholas Homrich/iStockphoto.

S e l f C h e c k

The central
processing unit (CPU)
performs program
control and
data processing.

Storage devices
include memory and
secondary storage.

Figure 1  Central Processing Unit© Amorphis/iStockphoto. Figure 2  A Hard Disk
PhotoDisc, Inc./Getty Images.

pyt_ch01_intro.indd 2 1/26/13 11:54 AM

1.2 T he Anatomy of a Computer   3

make small changes in a program that lead to immediate improvements, and to see the
computer become an extension of your mental powers.

1.	 What is required to play music on a computer?
2.	 Why is a CD player less flexible than a computer?
3.	 What does a computer user need to know about programming in order to play a

video game?

1.2  The Anatomy of a Computer
To understand the programming process, you need to have a rudimentary under-
standing of the building blocks that make up a computer. We will look at a personal
computer. Larger computers have faster, larger, or more powerful components, but
they have fundamentally the same design.

At the heart of the computer lies the central processing unit (CPU) (see Figure 1).
The inside wiring of the CPU is enormously complicated. The CPUs used for per
sonal computers at the time of this writing are composed of several hundred million
structural elements, called transistors.

The CPU performs program control and data processing. That is, the CPU locates
and executes the program instructions; it carries out arithmetic operations such as
addition, subtraction, multiplication, and division; it fetches data from external mem-
ory or devices and places processed data into storage.

There are two kinds of storage. Primary storage is made from memory chips:
electronic circuits that can store data, provided they are supplied with electric power.
Secondary storage, usually a hard disk (see Figure 2), provides slower and less
expensive storage that persists without electricity. A hard disk consists of rotating
platters, which are coated with a magnetic material, and read/write heads, which can
detect and change the magnetic flux on the platters.

The computer stores both data and programs. They are located in secondary stor-
age and loaded into memory when the program starts. The program then updates the
data in memory and writes the modified data back to secondary storage.

© Nicholas Homrich/iStockphoto.

S e l f C h e c k

The central
processing unit (CPU)
performs program
control and
data processing.

Storage devices
include memory and
secondary storage.

Figure 1  Central Processing Unit© Amorphis/iStockphoto. Figure 2  A Hard Disk
PhotoDisc, Inc./Getty Images.

pyt_ch01_intro.indd 3 1/26/13 11:54 AM

4  Chapter 1  Introduction

Figure 3  Schematic Design of a Personal Computer

Printer

Mouse/Trackpad

Keyboard

Microphone

Ports

CPU

Memory

Disk
controller

Secondary storage

Monitor

Speakers

Internet
Network
controller

To interact with a human user, a computer requires peripheral devices. The com-
puter transmits information (called output) to the user through a display screen,
speakers, and printers. The user can enter information (called input) for the computer
by using a keyboard or a pointing device such as a mouse.

Some computers are self-contained units, whereas others are interconnected
through networks. Through the network cabling, the computer can read data and
programs from central storage locations or send data to other computers. To the user
of a networked computer, it may not even be obvious which data reside on the com-
puter itself and which are transmitted through the network.

Figure 3 gives a schematic overview of the architecture of a personal computer.
Program instructions and data (such as text, numbers, audio, or video) are stored on
the hard disk, on a compact disk (or DVD), or elsewhere on the network. When a
program is started, it is brought into memory, where the CPU can read it. The CPU
reads the program one instruction at a time. As directed by these instructions, the
CPU reads data, modifies it, and writes it back to memory or the hard disk. Some pro-
gram instructions will cause the CPU to place dots on the display screen or printer or
to vibrate the speaker. As these actions happen many times over and at great speed,
the human user will perceive images and sound. Some program instructions read user
input from the keyboard or mouse. The program analyzes the nature of these inputs
and then executes the next appropriate instruction.

4.	 Where is a program stored when it is not currently running?
5.	 Which part of the computer carries out arithmetic operations, such as addition

and multiplication?

Practice It	 Now you can try these exercises at the end of the chapter: R1.2, R1.3.© Nicholas Homrich/iStockphoto.

S e l f C h e c k

pyt_ch01_intro.indd 4 1/26/13 11:54 AM

1.3 T he Python Programming Language   5

1.3  The Python Programming Language
In order to write a computer program, you need to provide a sequence of instructions
that the CPU can execute. A computer program consists of a large number of simple
CPU instructions, and it is tedious and error-prone to specify them one by one. For
that reason, high-level programming languages have been created. These languages

When computers were first
invented in the 1940s, a
computer filled an entire

room. The photo below shows the
ENIAC (electronic numerical integra-
tor and computer), completed in 1946
at the University of Pennsylvania.
The ENIAC was used by the military
to compute the trajectories of projec-
tiles. Nowadays, computing facilities
of search engines, Internet shops, and
social networks fill huge buildings
called data centers. At the other end of
the spectrum, computers are all around
us. Your cell phone has a computer
inside, as do many credit cards and fare
cards for public transit. A modern car
has several computers––to control the
engine, brakes, lights, and the radio.

© UPPA/Photoshot.

 The ENIAC

© Maurice Savage/Alamy Limited.
This transit card contains a computer.

The advent of ubiqui-
tous computing changed
many aspects of our
lives. Factories used
to employ people to
do repetitive assembly
tasks that are today car-
ried out by computer-
controlled robots, oper-
ated by a few people
who know how to work
with those computers.
Books, music, and mov-
ies nowadays are often
consumed on comput-
ers, and computers are
almost always involved
in their production. The book that
you are reading right now could

not have been written without
computers.

Knowing about computers and
how to program them has become
an essential skill in many careers.
Engineers design computer-controlled
cars and medical equipment that
preserve lives. Computer scientists
develop programs that help people
come together to support social
causes. For example, activists used
social networks to share videos
showing abuse by repressive regimes,
and this information was instrumental
in changing public opinion.

As computers, large and small,
become ever more embedded in our
everyday lives, it is increasingly impor-
tant for everyone to understand how
they work, and how to work with them.
As you use this book to learn how to
program a computer, you will develop
a good understanding of computing
fundamentals that will make you a
more informed citizen and, perhaps,
a computing professional.

Computing & Society 1.1  Computers Are Everywhere

© Stephen Coburn/123RF.com.

pyt_ch01_intro.indd 5 1/26/13 11:54 AM

6  Chapter 1  Introduction

allow a programmer to specify the desired program actions at a high level. The
high-level instructions are then automatically translated into the more detailed
instructions required by the CPU.

In this book, we will use a high-level programming
language called Python, which was developed in
the early 1990s by Guido van Rossum. Van Rossum
needed to carry out repetitive tasks for administer-
ing computer systems. He was dissatisfied with other
available languages that were optimized for writing
large and fast programs. He needed to write smaller
programs that didn’t have to run at optimum speed.
It was important to him that he could author the pro-
grams quickly and update them quickly as his needs
changed. Therefore, he designed a language that
made it very easy to work with complex data. Python
has evolved considerably since its beginnings. In this
book, we use version 3 of the Python language. Van
Rossum is still the principal author of the language,
but the effort now includes many volunteers.

Python has become popular for business, scien-
tific, and academic applications and is very suitable for the beginning programmer.
There are many reasons for the success of Python. Python has a much simpler and
cleaner syntax than other popular languages such as Java, C, and C++, which makes
it easier to learn. Moreover, you can try out short Python programs in an interactive
environment, which encourages experimentation and rapid turnaround. Python is
also very portable between computer systems. The same Python program will run,
without change, on Windows, UNIX, Linux, or Macintosh.

6.	 Why don’t you specify a program directly in CPU instructions?
7.	 What are the two most important benefits of the Python language?

Practice It	 Now you can try this exercise at the end of the chapter: R1.5.

1.4  Becoming Familiar with Your Programming
Environment

Many students find that the tools they need as programmers are very different from
the software with which they are familiar. You should spend some time making your-
self familiar with your programming environment. Because computer systems vary
widely, this book can only give an outline of the steps you need to follow. It is a good
idea to participate in a hands-on lab, or to ask a knowledgeable friend to give you
a tour.

© Sauria Associates, LLC/FlickrVision/Getty Images.

Python is portable
and easy to learn
and use.

© Nicholas Homrich/iStockphoto.

S e l f C h e c k

Set aside some
time to become
familiar with the
programming
environment that
you will use for your
class work.

Step 1	 Start the Python development environment.

Computer systems differ greatly in this regard. On many computers there is an inte-
grated development environment in which you can write and test your programs.
On other computers you first launch a text editor, a program that functions like a
word processor, in which you can enter your Python instructions; you then open a
terminal window and type commands to execute your program. You need to find
out how to get started with the development environment you will use to write code
in Python.

Step 2	 Write a simple program.

The traditional choice for the very first program in a new programming language is
a program that displays a simple greeting: “Hello, World!”. Let us follow that tradi-
tion. Here is the “Hello, World!” program in Python:

My first Python program.
print("Hello, World!")

We will examine this program in the next section.
No matter which programming environment you use, you begin your activity by

typing the program instructions into an editor window.
Create a new file and call it hello.py, using the steps that are appropriate for your

environment. (If your environment requires that you supply a project name in addi-
tion to the file name, use the name hello for the project.) Enter the program instruc-
tions exactly as they are given above. Alternatively, locate the electronic copy in this
book’s companion code and paste it into your editor.

As you write this program, pay careful attention to the various symbols, and keep
in mind that Python is case sensitive. You must enter upper- and lowercase letters
exactly as they appear in the program listing. You cannot type Print or PRINT. If you
are not careful, you will run into problems—see Common Error 1.1 on page 15.

Step 3	 Run the program.

The process for running a program depends greatly on your programming environ-
ment. You may have to click a button or enter some commands. When you run the
test program, the message

Hello, World!

will appear somewhere on the screen (see Figures 4 and 5).

A text editor is a
program for entering
and modifying text,
such as a
Python program.

Python is case
sensitive. You must
be careful about
distinguishing
between upper- and
lowercase letters.

Figure 4  Running the hello.py Program in a Terminal Window

pyt_ch01_intro.indd 6 1/26/13 11:54 AM

1.4  Becoming Familiar with Your Programming Environment   7

Step 1	 Start the Python development environment.

Computer systems differ greatly in this regard. On many computers there is an inte-
grated development environment in which you can write and test your programs.
On other computers you first launch a text editor, a program that functions like a
word processor, in which you can enter your Python instructions; you then open a
terminal window and type commands to execute your program. You need to find
out how to get started with the development environment you will use to write code
in Python.

Step 2	 Write a simple program.

The traditional choice for the very first program in a new programming language is
a program that displays a simple greeting: “Hello, World!”. Let us follow that tradi-
tion. Here is the “Hello, World!” program in Python:

My first Python program.
print("Hello, World!")

We will examine this program in the next section.
No matter which programming environment you use, you begin your activity by

typing the program instructions into an editor window.
Create a new file and call it hello.py, using the steps that are appropriate for your

environment. (If your environment requires that you supply a project name in addi-
tion to the file name, use the name hello for the project.) Enter the program instruc-
tions exactly as they are given above. Alternatively, locate the electronic copy in this
book’s companion code and paste it into your editor.

As you write this program, pay careful attention to the various symbols, and keep
in mind that Python is case sensitive. You must enter upper- and lowercase letters
exactly as they appear in the program listing. You cannot type Print or PRINT. If you
are not careful, you will run into problems—see Common Error 1.1 on page 15.

Step 3	 Run the program.

The process for running a program depends greatly on your programming environ-
ment. You may have to click a button or enter some commands. When you run the
test program, the message

Hello, World!

will appear somewhere on the screen (see Figures 4 and 5).

A text editor is a
program for entering
and modifying text,
such as a
Python program.

Python is case
sensitive. You must
be careful about
distinguishing
between upper- and
lowercase letters.

Figure 4  Running the hello.py Program in a Terminal Window

pyt_ch01_intro.indd 7 1/26/13 11:54 AM

8  Chapter 1  Introduction

Figure 5 
Running the
hello.py Program
in an Integrated
Development
Environment

A Python program is executed using the Python interpreter. The interpreter
reads your program and executes all of its steps. (Special Topic 1.1 on page 10 explains
in more detail what the Python interpreter does.) In some programming environ-
ments, the Python interpreter is automatically launched when you click on a “Run”
button or select the “Run” option from a menu. In other environments, you have to
launch the interpreter explicitly.

Step 4	 Organize your work.

As a programmer, you write programs, try them out, and improve them. If you want
to keep your programs, or turn them in for grading, you store them in files. A Python
program can be stored in a file with any name, provided it ends with .py. For example,
we can store our first program in a file named hello.py or welcome.py.

Files are stored in folders or directories. A folder can contain files as well as other
folders, which themselves can contain more files and folders (see Figure 6). This hier-
archy can be quite large, and you need not be concerned with all of its branches.
However, you should create folders for organizing your work. It is a good idea to
make a separate folder for your programming class. Inside that folder, make a sepa-
rate folder for each program.

Some programming environments place your programs into a default location if
you don’t specify a folder. In that case, you need to find out where those files are
located.

Be sure that you understand where your files are located in the folder hierarchy.
This information is essential when you submit files for grading, and for making
backup copies (see Programming Tip 1.2 on page 10).

The Python
interpreter reads
Python programs
and executes
the program
instructions.

8.	 Where is the hello.py file stored on your computer?
9.	 What do you do to protect yourself from data loss when you work on program-

ming projects?

Practice It	 Now you can try this exercise at the end of the chapter: R1.6.

Interactive Mode

When you write a complete program, you place the program instructions in a file and let the
Python interpreter execute your program file. The interpreter, however, also provides an
interactive mode in which Python instructions can be entered one at a time. To launch the
Python interactive mode from a terminal window, enter the command

python

(On systems where multiple versions of Python are installed, use the command python3 to run
version 3 of Python.) Interactive mode can also be started from within most Python integrated
development environments.

The interface for working in interactive mode is known as the Python shell. First, you will
see an informational message similar to the following:

Python 3.1.2 (r312:79147, Aug 23 2010, 05:17:13)
[GCC 4.4.4 20100630 (Red Hat 4.4.4-10)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

The >>> at the bottom of the output is the prompt. It indicates that you can enter Python
instructions. After you type an instruction and press the Enter key, the code is immediately
executed by the Python interpreter. For example, if you enter

print("Hello, World!")

the interpreter will respond by executing the print function and displaying the output, fol-
lowed by another prompt:

>>> print("Hello, World!")
Hello World
>>>

Interactive mode is very useful when you are first learning to program. It allows you to experi-
ment and test individual Python instructions to see what happens. You can also use interactive
mode as a simple calculator. Just enter mathematical expressions using Python syntax:

>>> 7035 * 0.15
1055.25
>>>

Make it a habit to use interactive mode as you experiment with new language constructs.

© Nicholas Homrich/iStockphoto.

S e l f C h e c k

Programming Tip 1.1

© Mikhail Mishchenko/123RF.com.

pyt_ch01_intro.indd 8 1/26/13 11:54 AM

1.4  Becoming Familiar with Your Programming Environment   9

8.	

Figure 6 
A Folder Hierarchy

Where is the hello.py file stored on your computer?
9.	 What do you do to protect yourself from data loss when you work on program-

ming projects?

Practice It	 Now you can try this exercise at the end of the chapter: R1.6.

Interactive Mode

When you write a complete program, you place the program instructions in a file and let the
Python interpreter execute your program file. The interpreter, however, also provides an
interactive mode in which Python instructions can be entered one at a time. To launch the
Python interactive mode from a terminal window, enter the command

python

(On systems where multiple versions of Python are installed, use the command python3 to run
version 3 of Python.) Interactive mode can also be started from within most Python integrated
development environments.

The interface for working in interactive mode is known as the Python shell. First, you will
see an informational message similar to the following:

Python 3.1.2 (r312:79147, Aug 23 2010, 05:17:13)
[GCC 4.4.4 20100630 (Red Hat 4.4.4-10)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>

The >>> at the bottom of the output is the prompt. It indicates that you can enter Python
instructions. After you type an instruction and press the Enter key, the code is immediately
executed by the Python interpreter. For example, if you enter

print("Hello, World!")

the interpreter will respond by executing the print function and displaying the output, fol-
lowed by another prompt:

>>> print("Hello, World!")
Hello World
>>>

Interactive mode is very useful when you are first learning to program. It allows you to experi-
ment and test individual Python instructions to see what happens. You can also use interactive
mode as a simple calculator. Just enter mathematical expressions using Python syntax:

>>> 7035 * 0.15
1055.25
>>>

Make it a habit to use interactive mode as you experiment with new language constructs.

© Nicholas Homrich/iStockphoto.

S e l f C h e c k

Programming Tip 1.1

© Mikhail Mishchenko/123RF.com.

pyt_ch01_intro.indd 9 1/26/13 11:54 AM

